Compiler

Lec 04

___]

Book

Compilers: Principles, Techniques,
and Tools is a computer science
textbook by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D.
Ullman about compiler
construction.

Compilers

Principles, Techniques, & Tools

(

i Second Edition

ge,
2,
~ Symbax .
“nRirectoy
“elation
%
-

-
RN

£

Alfred V. Aho
Monica S. Lam
Ravi Sethi

Jeffrey D. Ullman

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Benha University staff SeM@ioms:Ahmed Hassan Ahmed Abu El Atta (
Beakin Daliait You are in:Home/Courses/Compilers Back To Courses &~ o
enha Universt . [o
Ass. Lect. Ahmed Hassan Ahmed Abu El Atta :: Course Details: T
Home Compilers .
At ils add course | edit course
| adi Comp"ers @
- @
Eavel Undergraduate !
Courses l o
Publications Last year taught 2018
Inlinks(Competition) =
Course description Not Uploaded 8
Theses '?
-
Reports .
Course password &
Published books @
Workshops / Conferences [/ .
| Course files 29d fies ok
Supervised PhD)
Supervised MSc Course URLS add URLs
| £
Supervised Projects =
Course assignments add assianments z
Education ’
Course Exams add exams | q
L Kill add exams
T &Model Answers | (\-1{
| eul
Academic Positions i
Administrative Positions

Syntax Analysis

PART |

___]

The role of parser

Construct a parse tree (tree need not be constructed explicitly; the
parser and the rest of the front end could well be implemented by a
single module).

Report and recover from errors.

tﬂkE]l o, i . '
source | Lexical }——— I parse | Rest of intermediate
il Parser “-----= _—
program | Analyzer W ! tree | Front End |representation
i 1
token

Symbol
Table

Types of parsers for grammars

Universal

o Can parse any grammar (Cocke-Younger-Kasami algorithm
and Earley's algorithm).

> Too inefficient to use in production compilers (Time-Cost).

Top-down
> Build parse trees from the root to the leaves.
> Scan input from left to right.

Bottom-up

o start from the leaves and work their way up to the root.
> Scan input from left to right.

Grammars

G=(T,N, P, S)

A set of terminals: basic symbols from which sentences are
formed.

A set of nonterminals: syntactic variables denoting sets of
strings.

A set of productions: rules specifying how the terminals and
nonterminals can be combined to form sentences. (A - B)

The start symbol: a distinguished nonterminal denoting the
language.

Example

T={+"7%1{), id}
N={E, T, F}
Start symbol “£”

Chomsky hierarchy
(classification of grammars)

Recursively Enumerable

Context-Sensitive

Context - Free

Unrestricted
Grammar

Context
Sensitive
Grammar

Context
Free
Grammar

Regular
Grammar

Regular grammar

A grammar is said to be regular if it is

right-linear, where each production in P has
the form,

A—-> wBorA—->w
A BENandandweT

Example

A—E€
A—>al aB
B—->b

Context-free grammar

A grammar is said to be context-free if each
production in P is of the form,

A-«a

A €N and @ € (NUT)’

Example

S—-> Aa
A - B | aA
B->aBc | ¢

Context sensitive grammar

A grammar is said to be context sensitive if
each production in P is of the form,

a -3
la] < |Bland @, B € (NUT)’

And S = € is allowed if S does not appear on
the right side of any rule.

Example

AB — AbBC
A — bcA
B—>Db

Unrestricted grammar

A grammar is said to be unrestricted if each
production in P is of the form,

a -3

a+ & and @, B € (NUT)"

Example

S - ACaB
Bc - acB
CB - DB
aD - Db

Derivations

oAl = oyp if A—oy
a =" o

o ="Band = ythena ="y

Derivations
E->E+E|E*E|-E| (E) | id

A leftmost derivation always chooses the leftmost
nonterminal to rewrite
E=E=(E)= (E+E)= (d+E)= (id+id)

A rightmost derivation always chooses the
rightmost nonterminal to rewrite
E=E= (E)=> (E+E)= (E+id)= (id+id)

Parse trees

BASIS : The tree for al = A is a single node labeled A.
INDUCTION:

° Suppose «; is derived from a;_; by replacing X; , a nonterminal, by 8
= Y1Y2 Ym

> To model this step of the derivation, find the jt leaf from the left in
the current parse tree. This leaf is labeled X; . Give this leaf “m”
children, labeled Y, Y5, ,Y,,, from the left .

-(id+id) RN
E=-E = -(E) = {/}I;\)
-(E+E) = -(id+E) E/-!-\E

= -(id+id) | |

Ambiguity

For some strings there exist more than one parse tree

Or more than one leftmost derivation

Or more than one rightmost derivation

Example: id+id*id

/f\ B - - fli% y Z gi,EE*E

E + E E/l\E = §d+.E*E = ::|d+:E:*E

a & G YO R
i1|:l i1|:l i1|:l i1|:l

Ambiguity

stmt — if expr then stmi
| if expr then stmt else stmi

| other

ifE1 then 31 else if F5 then 32 else 33

/tmt

then stmt else strnt

S A LA S .

if ezpr then stmt else stmi

Ambiguity
if E; then if £, then S, else S,
if E; then if £, then S, else S,

stmit

N

if ETPT then strn i
E, — T
if eTPT then stmi else stmi
Eo S1 S

Deal with Ambiguity

Rewrite to equivalent unambiquous grammar

o possible, but results in more complex grammar (several similar
rules).

Use the ambiquous grammar
o use "rule priority", the parser can select the correct rule.

o works for the dangling else problem, but not for ambiguous
grammars in general.

> not all parser generators support it well.

Change the lanquage
° e.g., add a keyword "fi" that closes the "if"-statement.

o restrict the "then" part to be a block: "{... }".
> only an option if you are designing the language yourself.

Eliminating Ambiguity

stmt

matched_stmi

open_stmt

—

—

—

matched_stmt
open_stmt
if expr then| matched_stmtlelse matched_stmt
other

if expr then stmt

if expr then| matched_stmt lelse open_stmt

Eliminating Ambiguity
E->E+E|E*E|-E| (E) | id

Restrict certain subtrees by introducing new
nonterminals.

FE =

E + 7T
I - T+F|
F - (E)|i

Examples

Write grammar for each of the following languages:

1. L={a, b}

2. Set of all strings over {a, b}.

3. Strings that consist of a sequence of a’s followed by a sequence of
b’s

4. Strings that consist of a sequence of a’s, where the number of a’s is
even.

5. The set of strings that begin with ab and end with ba, over alphabet
{a, b}.

6. thelanguage {a"b" | n>0and nis even}.

Examples

The set of strings of parentheses ().

L = {w|w starts and ends with the same symbol}.

1.
2.
3. The complement language {a" b" | n > 0}.
4. The palindrome.

5

Is the following grammar ambiguous :
S —> aSbS | bSaS | €

6. Is the following grammars ambiguous

S —a | aAb | abShb

