
Compiler
Lec 04

1

Book
Compilers: Principles, Techniques,
and Tools is a computer science
textbook by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D.
Ullman about compiler
construction.

2

PowerPoint
http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

3

Syntax Analysis
PART I

4

The role of parser
Construct a parse tree (tree need not be constructed explicitly; the
parser and the rest of the front end could well be implemented by a
single module).

Report and recover from errors.

5

Types of parsers for grammars
Universal
◦ Can parse any grammar (Cocke-Younger-Kasami algorithm

and Earley's algorithm).

◦ Too inefficient to use in production compilers (Time-Cost).

Top-down
◦ Build parse trees from the root to the leaves.

◦ Scan input from left to right.

Bottom-up
◦ start from the leaves and work their way up to the root.

◦ Scan input from left to right.

6

Grammars

G=(T, N, P, S)

A set of terminals: basic symbols from which sentences are
formed.

A set of nonterminals: syntactic variables denoting sets of
strings.

A set of productions: rules specifying how the terminals and
nonterminals can be combined to form sentences. (A → β)

The start symbol: a distinguished nonterminal denoting the
language.

7

Example

T = { +, *, (,), id}

N = {E, T, F}

Start symbol “E”

8

Chomsky hierarchy
(classification of grammars)

9

Regular
Grammar

Context
Sensitive
Grammar

Context
Free

Grammar

Unrestricted
Grammar

Regular grammar
A grammar is said to be regular if it is

right-linear, where each production in P has
the form,

A → wB or A → w

A, B ∈ N and and w ∈ T*

10

Example

A → ε

A → a | aB

B → b

11

Context-free grammar
A grammar is said to be context-free if each
production in P is of the form,

A → 𝜶

A ∈ N and 𝜶 ∈ (N∪T)*

12

Example

S → Aa

A → B | aA

B → aBc | ε

13

Context sensitive grammar
A grammar is said to be context sensitive if
each production in P is of the form,

𝜶 → β

𝜶 ≤ 𝜷 and 𝜶, 𝛃 ∈ (N∪T)*

And S → ε is allowed if S does not appear on
the right side of any rule.

14

Example

AB → AbBc

A → bcA

B → b

15

Unrestricted grammar
A grammar is said to be unrestricted if each
production in P is of the form,

𝜶 → β

𝜶 ≠ 𝜺 and 𝜶, 𝛃 ∈ (N∪T)*

16

Example

S → ACaB

Bc → acB

CB → DB

aD → Db

17

Derivations

aAb ⟹ agb if A ⟶ g

a ⟹∗ a

a ⟹∗b and b ⟹∗g then a ⟹∗g

18

Derivations

19

E -> E + E | E * E | -E | (E) | id

A leftmost derivation always chooses the leftmost
nonterminal to rewrite

E  E  (E)  (E + E)  (id + E)  (id + id)

A rightmost derivation always chooses the
rightmost nonterminal to rewrite

E  E  (E)  (E + E)  (E + id)  (id + id)

Parse trees
BASIS : The tree for al = A is a single node labeled A.

INDUCTION:
◦ Suppose 𝛼𝑖 is derived from 𝛼𝑖−1 by replacing 𝑋𝑗 , a nonterminal, by 𝛽

= 𝑌1𝑌2….. 𝑌𝑚.

◦ To model this step of the derivation, find the jth leaf from the left in
the current parse tree. This leaf is labeled 𝑋𝑗 . Give this leaf “m”
children, labeled 𝑌1, 𝑌2, ….. ,𝑌𝑚, from the left .

-(id+id)
E  -E  -(E) 

-(E+E)  -(id+E)

 -(id+id)

20

Ambiguity
For some strings there exist more than one parse tree

Or more than one leftmost derivation

Or more than one rightmost derivation

Example: id+id*id

21

Ambiguity

22

Ambiguity
if E1 then if E2 then S1 else S2

if E1 then if E2 then S1 else S2

23

Deal with Ambiguity
Rewrite to equivalent unambiguous grammar
◦ possible, but results in more complex grammar (several similar

rules).

Use the ambiguous grammar
◦ use "rule priority", the parser can select the correct rule.

◦ works for the dangling else problem, but not for ambiguous
grammars in general.

◦ not all parser generators support it well.

Change the language
◦ e.g., add a keyword "fi" that closes the "if"-statement.

◦ restrict the "then" part to be a block: "{ ... }".

◦ only an option if you are designing the language yourself.

24

Eliminating Ambiguity

25

Eliminating Ambiguity
E -> E + E | E * E | -E | (E) | id

Restrict certain subtrees by introducing new
nonterminals.

26

Examples
Write grammar for each of the following languages:

1. L = {a, b}.

2. Set of all strings over {a, b}.

3. Strings that consist of a sequence of a’s followed by a sequence of
b’s

4. Strings that consist of a sequence of a’s, where the number of a’s is
even.

5. The set of strings that begin with ab and end with ba, over alphabet
{a, b}.

6. the language {an bn | n ≥ 0 and n is even}.

27

Examples
1. The set of strings of parentheses ().

2. L = {w|w starts and ends with the same symbol}.

3. The complement language {an bn | n ≥ 0}.

4. The palindrome.

5. Is the following grammar ambiguous :
S → aSbS | bSaS | ε

6. Is the following grammars ambiguous

28

?

29

